|Yryx with Open Texts

LINEAR ALGEBRA with Applications

Open Edition

Adapted for
Emory University
Math 221
Linear Algebra
Sections 1 \& 2
Lectured and adapted by
Le Chen
April 15, 2021
le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson

Contents

1 Systems of Linear Equations 5
1.1 Solutions and Elementary Operations 6
1.2 Gaussian Elimination 16
1.3 Homogeneous Equations 28
Supplementary Exercises for Chapter 1 37
2 Matrix Algebra 39
2.1 Matrix Addition, Scalar Multiplication, and Transposition 40
2.2 Matrix-Vector Multiplication 53
2.3 Matrix Multiplication 72
2.4 Matrix Inverses 91
2.5 Elementary Matrices 109
2.6 Linear Transformations 119
2.7 LU-Factorization 135
3 Determinants and Diagonalization 147
3.1 The Cofactor Expansion 148
3.2 Determinants and Matrix Inverses 163
3.3 Diagonalization and Eigenvalues 178
Supplementary Exercises for Chapter 3 201
4 Vector Geometry 203
4.1 Vectors and Lines 204
4.2 Projections and Planes 223
4.3 More on the Cross Product 244
4.4 Linear Operators on \mathbb{R}^{3} 251
Supplementary Exercises for Chapter 4 260
5 Vector Space \mathbb{R}^{n} 263
5.1 Subspaces and Spanning 264
5.2 Independence and Dimension 273
5.3 Orthogonality 287
5.4 Rank of a Matrix 297
5.5 Similarity and Diagonalization 307
Supplementary Exercises for Chapter 5 320
6 Vector Spaces 321
6.1 Examples and Basic Properties 322
6.2 Subspaces and Spanning Sets 333
6.3 Linear Independence and Dimension 342
6.4 Finite Dimensional Spaces 354
Supplementary Exercises for Chapter 6 364
7 Linear Transformations 365
7.1 Examples and Elementary Properties 366
7.2 Kernel and Image of a Linear Transformation 374
7.3 Isomorphisms and Composition 385
8 Orthogonality 399
8.1 Orthogonal Complements and Projections 400
8.2 Orthogonal Diagonalization 410
8.3 Positive Definite Matrices 421
8.4 QR-Factorization 427
8.5 Computing Eigenvalues 431
8.6 The Singular Value Decomposition 436
8.6.1 Singular Value Decompositions 436
8.6.2 Fundamental Subspaces 442
8.6.3 The Polar Decomposition of a Real Square Matrix 445
8.6.4 The Pseudoinverse of a Matrix 447

4.4 Linear Operators on \mathbb{R}^{3}

Recall that a transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$ and $T(a \mathbf{x})=$ $a T(\mathbf{x})$ holds for all \mathbf{x} and \mathbf{y} in \mathbb{R}^{n} and all scalars a. In this case we showed (in Theorem 2.6.2) that there exists an $m \times n$ matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^{n}, and we say that T is the matrix transformation induced by A.

Definition 4.9 Linear Operator on \mathbb{R}^{n}

A linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

is called a linear operator on \mathbb{R}^{n}.

In Section 2.6 we investigated three important linear operators on \mathbb{R}^{2} : rotations about the origin, reflections in a line through the origin, and projections on this line.

In this section we investigate the analogous operators on \mathbb{R}^{3} : Rotations about a line through the origin, reflections in a plane through the origin, and projections onto a plane or line through the origin in \mathbb{R}^{3}. In every case we show that the operator is linear, and we find the matrices of all the reflections and projections.

To do this we must prove that these reflections, projections, and rotations are actually linear operators on \mathbb{R}^{3}. In the case of reflections and rotations, it is convenient to examine a more general situation. A transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is said to be distance preserving if the distance between $T(\mathbf{v})$ and $T(\mathbf{w})$ is the same as the distance between \mathbf{v} and \mathbf{w} for all \mathbf{v} and \mathbf{w} in \mathbb{R}^{3}; that is,

$$
\begin{equation*}
\|T(\mathbf{v})-T(\mathbf{w})\|=\|\mathbf{v}-\mathbf{w}\| \text { for all } \mathbf{v} \text { and } \mathbf{w} \text { in } \mathbb{R}^{3} \tag{4.4}
\end{equation*}
$$

Clearly reflections and rotations are distance preserving, and both carry $\mathbf{0}$ to $\mathbf{0}$, so the following theorem shows that they are both linear.

Theorem 4.4.1

If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is distance preserving, and if $T(\boldsymbol{0})=\boldsymbol{0}$, then T is linear.

Figure 4.4.1

Proof. Since $T(\mathbf{0})=\mathbf{0}$, taking $\mathbf{w}=\mathbf{0}$ in (4.4) shows that $\|T(\mathbf{v})\|=\|\mathbf{v}\|$ for all \mathbf{v} in \mathbb{R}^{3}, that is T preserves length. Also, $\|T(\mathbf{v})-T(\mathbf{w})\|^{2}=$ $\|\mathbf{v}-\mathbf{w}\|^{2}$ by (4.4). Since $\|\mathbf{v}-\mathbf{w}\|^{2}=\|\mathbf{v}\|^{2}-2 \mathbf{v} \cdot \mathbf{w}+\|\mathbf{w}\|^{2}$ always holds, it follows that $T(\mathbf{v}) \cdot T(\mathbf{w})=\mathbf{v} \cdot \mathbf{w}$ for all \mathbf{v} and \mathbf{w}. Hence (by Theorem 4.2.2) the angle between $T(\mathbf{v})$ and $T(\mathbf{w})$ is the same as the angle between \mathbf{v} and \mathbf{w} for all (nonzero) vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{3}.

With this we can show that T is linear. Given nonzero vectors \mathbf{v} and \mathbf{w} in \mathbb{R}^{3}, the vector $\mathbf{v}+\mathbf{w}$ is the diagonal of the parallelogram determined by \mathbf{v} and \mathbf{w}. By the preceding paragraph, the effect of T is to carry this entire parallelogram to the parallelogram determined
by $T(\mathbf{v})$ and $T(\mathbf{w})$, with diagonal $T(\mathbf{v}+\mathbf{w})$. But this diagonal is $T(\mathbf{v})+T(\mathbf{w})$ by the parallelogram law (see Figure 4.4.1).
In other words, $T(\mathbf{v}+\mathbf{w})=T(\mathbf{v})+T(\mathbf{w})$. A similar argument shows that $T(a \mathbf{v})=a T(\mathbf{v})$ for all scalars a, proving that T is indeed linear.

Distance-preserving linear operators are called isometries, and we return to them in Section ??.

Reflections and Projections

In Section 2.6 we studied the reflection $Q_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ in the line $y=m x$ and projection $P_{m}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ on the same line. We found (in Theorems 2.6.5 and 2.6.6) that they are both linear and

$$
Q_{m} \text { has matrix } \frac{1}{1+m^{2}}\left[\begin{array}{cc}
1-m^{2} & 2 m \\
2 m & m^{2}-1
\end{array}\right] \quad \text { and } \quad P_{m} \text { has matrix } \frac{1}{1+m^{2}}\left[\begin{array}{cc}
1 & m \\
m & m^{2}
\end{array}\right] \text {. }
$$

Figure 4.4.2

We now look at the analogues in \mathbb{R}^{3}.
Let L denote a line through the origin in \mathbb{R}^{3}. Given a vector \mathbf{v} in \mathbb{R}^{3}, the reflection $Q_{L}(\mathbf{v})$ of \mathbf{v} in L and the projection $P_{L}(\mathbf{v})$ of \mathbf{v} on L are defined in Figure 4.4.2. In the same figure, we see that

$$
\begin{equation*}
P_{L}(\mathbf{v})=\mathbf{v}+\frac{1}{2}\left[Q_{L}(\mathbf{v})-\mathbf{v}\right]=\frac{1}{2}\left[Q_{L}(\mathbf{v})+\mathbf{v}\right] \tag{4.5}
\end{equation*}
$$

so the fact that Q_{L} is linear (by Theorem 4.4.1) shows that P_{L} is also linear. ${ }^{13}$
However, Theorem 4.2.4 gives us the matrix of P_{L} directly. In fact, if $\mathbf{d}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \neq \mathbf{0}$ is a direction vector for L, and we write $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, then

$$
P_{L}(\mathbf{v})=\frac{\mathbf{v} \cdot \mathbf{d}}{\|\mathbf{d}\|^{2}} \mathbf{d}=\frac{a x+b y+c z}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

as the reader can verify. Note that this shows directly that P_{L} is a matrix transformation and so gives another proof that it is linear.

Theorem 4.4.2

Let L denote the line through the origin in \mathbb{R}^{3} with direction vector $\boldsymbol{d}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \neq \boldsymbol{0}$. Then

[^0]P_{L} and Q_{L} are both linear and
\[

$$
\begin{aligned}
& P_{L} \text { has matrix } \frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right] \\
& Q_{L} \text { has matrix } \frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}
a^{2}-b^{2}-c^{2} & 2 a b & 2 a c \\
2 a b & b^{2}-a^{2}-c^{2} & 2 b c \\
2 a c & 2 b c & c^{2}-a^{2}-b^{2}
\end{array}\right]
\end{aligned}
$$
\]

Proof. It remains to find the matrix of Q_{L}. But (4.5) implies that $Q_{L}(\mathbf{v})=2 P_{L}(\mathbf{v})-\mathbf{v}$ for each \mathbf{v} in \mathbb{R}^{3}, so if $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ we obtain (with some matrix arithmetic):

$$
\begin{aligned}
Q_{L}(\mathbf{v}) & =\left\{\frac{2}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{lll}
a^{2} & a b & a c \\
a b & b^{2} & b c \\
a c & b c & c^{2}
\end{array}\right]-\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right\}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \\
& =\frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}
a^{2}-b^{2}-c^{2} & 2 a b & 2 a c \\
2 a b & b^{2}-a^{2}-c^{2} & 2 b c \\
2 a c & 2 b c & c^{2}-a^{2}-b^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

as required.

Figure 4.4.3
Again we can obtain the matrix directly. If \mathbf{n} is a normal for the plane M, then Figure 4.4.3 shows that

$$
P_{M}(\mathbf{v})=\mathbf{v}-\operatorname{proj}_{\mathbf{n}} \mathbf{v}=\mathbf{v}-\frac{\mathbf{v} \cdot \mathbf{n}}{\|\mathbf{n}\|^{2}} \mathbf{n} \text { for all vectors } \mathbf{v}
$$

If $\mathbf{n}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \neq \mathbf{0}$ and $\mathbf{v}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$, a computation like the above gives

$$
\begin{aligned}
P_{M}(\mathbf{v}) & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]-\frac{a x+b y+c z}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \\
& =\frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}
b^{2}+c^{2} & -a b & -a c \\
-a b & a^{2}+c^{2} & -b c \\
-a c & -b c & b^{2}+c^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}
$$

In \mathbb{R}^{3} we can reflect in planes as well as lines. Let M denote a plane through the origin in \mathbb{R}^{3}. Given a vector \mathbf{v} in \mathbb{R}^{3}, the reflection $Q_{M}(\mathbf{v})$ of \mathbf{v} in M and the projection $P_{M}(\mathbf{v})$ of \mathbf{v} on M are defined in Figure 4.4.3. As above, we have

$$
P_{M}(\mathbf{v})=\mathbf{v}+\frac{1}{2}\left[Q_{M}(\mathbf{v})-\mathbf{v}\right]=\frac{1}{2}\left[Q_{M}(\mathbf{v})+\mathbf{v}\right]
$$

so the fact that Q_{M} is linear (again by Theorem 4.4.1) shows that P_{M} is also linear.

This proves the first part of

Theorem 4.4.3

Let M denote the plane through the origin in \mathbb{R}^{3} with normal $\boldsymbol{n}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \neq \boldsymbol{0}$. Then P_{M} and Q_{M} are both linear and

$$
\begin{gathered}
P_{M} \text { has matrix } \frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}
b^{2}+c^{2} & -a b & -a c \\
-a b & a^{2}+c^{2} & -b c \\
-a c & -b c & a^{2}+b^{2}
\end{array}\right] \\
Q_{M} \text { has matrix } \frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}
b^{2}+c^{2}-a^{2} & -2 a b & -2 a c \\
-2 a b & a^{2}+c^{2}-b^{2} & -2 b c \\
-2 a c & -2 b c & a^{2}+b^{2}-c^{2}
\end{array}\right]
\end{gathered}
$$

Proof. It remains to compute the matrix of Q_{M}. Since $Q_{M}(\mathbf{v})=2 P_{M}(\mathbf{v})-\mathbf{v}$ for each \mathbf{v} in \mathbb{R}^{3}, the computation is similar to the above and is left as an exercise for the reader.

Rotations

In Section 2.6 we studied the rotation $R_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ counterclockwise about the origin through the angle θ. Moreover, we showed in Theorem 2.6.4 that R_{θ} is linear and has matrix $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$. One extension of this is given in the following example.

Example 4.4.1

Let $R_{z, \theta}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote rotation of \mathbb{R}^{3} about the z axis through an angle θ from the positive x axis toward the positive y axis. Show that $R_{z, \theta}$ is linear and find its matrix.

Solution. First R is distance preserving and so is linear

Figure 4.4.4 by Theorem 4.4.1. Hence we apply Theorem 2.6.2 to obtain the matrix of $R_{z, \theta}$.
Let $\mathbf{i}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right], \mathbf{j}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$, and $\mathbf{k}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ denote the standard basis of \mathbb{R}^{3}; we must find $R_{z, \theta}(\mathbf{i}), R_{z, \theta}(\mathbf{j})$, and $R_{z, \theta}(\mathbf{k})$.
Clearly $R_{z, \theta}(\mathbf{k})=\mathbf{k}$. The effect of $R_{z, \theta}$ on the $x-y$ plane is to rotate it counterclockwise through the angle $\boldsymbol{\theta}$. Hence Figure 4.4.4 gives

$$
R_{z, \theta}(\mathbf{i})=\left[\begin{array}{c}
\cos \theta \\
\sin \theta \\
0
\end{array}\right], \quad R_{z, \theta}(\mathbf{j})=\left[\begin{array}{c}
-\sin \theta \\
\cos \theta \\
0
\end{array}\right]
$$

so, by Theorem 2.6.2, $R_{z, \theta}$ has matrix

$$
\left[\begin{array}{lll}
R_{z, \theta}(\mathbf{i}) & R_{z, \theta}(\mathbf{j}) & R_{z, \theta}(\mathbf{k})
\end{array}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Example 4.4 .1 begs to be generalized. Given a line L through the origin in \mathbb{R}^{3}, every rotation about L through a fixed angle is clearly distance preserving, and so is a linear operator by Theorem 4.4.1. However, giving a precise description of the matrix of this rotation is not easy and will have to wait until more techniques are available.

Transformations of Areas and Volumes

Figure 4.4.5

Figure 4.4.6

Figure 4.4.7

Let \mathbf{v} be a nonzero vector in \mathbb{R}^{3}. Each vector in the same direction as \mathbf{v} whose length is a fraction s of the length of \mathbf{v} has the form $s \mathbf{v}$ (see Figure 4.4.5).

With this, scrutiny of Figure 4.4.6 shows that a vector \mathbf{u} is in the parallelogram determined by \mathbf{v} and \mathbf{w} if and only if it has the form $\mathbf{u}=s \mathbf{v}+t \mathbf{w}$ where $0 \leq s \leq 1$ and $0 \leq t \leq 1$. But then, if $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a linear transformation, we have

$$
T(s \mathbf{v}+t \mathbf{w})=T(s \mathbf{v})+T(t \mathbf{w})=s T(\mathbf{v})+t T(\mathbf{w})
$$

Hence $T(s \mathbf{v}+t \mathbf{w})$ is in the parallelogram determined by $T(\mathbf{v})$ and $T(\mathbf{w})$. Conversely, every vector in this parallelogram has the form $T(s \mathbf{v}+t \mathbf{w})$ where $s \mathbf{v}+t \mathbf{w}$ is in the parallelogram determined by \mathbf{v} and \mathbf{w}. For this reason, the parallelogram determined by $T(\mathbf{v})$ and $T(\mathbf{w})$ is called the image of the parallelogram determined by \mathbf{v} and \mathbf{w}. We record this discussion as:

Theorem 4.4.4

If $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}\left(\right.$ or $\left.\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}\right)$ is a linear operator, the image of the parallelogram determined by vectors \mathbf{v} and \mathbf{w} is the parallelogram determined by $T(\boldsymbol{v})$ and $T(\boldsymbol{w})$.

This result is illustrated in Figure 4.4.7, and was used in Examples 2.2.15 and 2.2.16 to reveal the effect of expansion and shear transformations.

We now describe the effect of a linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ on the parallelepiped determined by three vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in \mathbb{R}^{3} (see the discussion preceding Theorem 4.3.5). If T has matrix A,

Theorem 4.4.4 shows that this parallelepiped is carried to the parallelepiped determined by $T(\mathbf{u})=A \mathbf{u}, T(\mathbf{v})=A \mathbf{v}$, and $T(\mathbf{w})=A \mathbf{w}$. In particular, we want to discover how the volume changes, and it turns out to be closely related to the determinant of the matrix A.

Theorem 4.4.5

Let $\operatorname{vol}(\mathbf{u}, \mathbf{v}, \mathbf{w})$ denote the volume of the parallelepiped determined by three vectors \mathbf{u}, \mathbf{v}, and \boldsymbol{w} in \mathbb{R}^{3}, and let area $(\boldsymbol{p}, \boldsymbol{q})$ denote the area of the parallelogram determined by two vectors \boldsymbol{p} and \boldsymbol{q} in \mathbb{R}^{2}. Then:

1. If A is a 3×3 matrix, then $\operatorname{vol}(A \boldsymbol{u}, A \boldsymbol{v}, A \boldsymbol{w})=|\operatorname{det}(A)| \cdot \operatorname{vol}(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$.
2. If A is a 2×2 matrix, then $\operatorname{area}(A \boldsymbol{p}, A \boldsymbol{q})=|\operatorname{det}(A)| \cdot \operatorname{area}(\boldsymbol{p}, \boldsymbol{q})$.

Proof.

1. Let $\left[\begin{array}{lll}\mathbf{u} & \mathbf{v} & \mathbf{w}\end{array}\right]$ denote the 3×3 matrix with columns \mathbf{u}, \mathbf{v}, and \mathbf{w}. Then

$$
\operatorname{vol}(A \mathbf{u}, A \mathbf{v}, A \mathbf{w})=|A \mathbf{u} \cdot(A \mathbf{v} \times A \mathbf{w})|
$$

by Theorem 4.3.5. Now apply Theorem 4.3.1 twice to get

$$
\begin{aligned}
A \mathbf{u} \cdot(A \mathbf{v} \times A \mathbf{w})=\operatorname{det}\left[\begin{array}{lll}
A \mathbf{u} & A \mathbf{v} & A \mathbf{w}
\end{array}\right] & =\operatorname{det}\left(A\left[\begin{array}{lll}
\mathbf{u} & \mathbf{v} & \mathbf{w}
\end{array}\right]\right) \\
& =\operatorname{det}(A) \operatorname{det}\left[\begin{array}{ll}
\mathbf{u} & \mathbf{v} \\
\mathbf{w}
\end{array}\right] \\
& =\operatorname{det}(A)(\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w}))
\end{aligned}
$$

where we used Definition 2.9 and the product theorem for determinants. Finally (1) follows from Theorem 4.3.5 by taking absolute values.

2. Given $\mathbf{p}=\left[\begin{array}{l}x \\ y\end{array}\right]$ in $\mathbb{R}^{2}, \mathbf{p}_{1}=\left[\begin{array}{l}x \\ y \\ 0\end{array}\right]$ in \mathbb{R}^{3}. By the diagram, $\operatorname{area}(\mathbf{p}, \mathbf{q})=\operatorname{vol}\left(\mathbf{p}_{1}, \mathbf{q}_{1}, \mathbf{k}\right)$ where \mathbf{k} is the (length 1) coordinate vector along the z axis. If A is a 2×2 matrix, write $A_{1}=\left[\begin{array}{cc}A & 0 \\ 0 & 1\end{array}\right]$ in block form, and observe that $(A \mathbf{v})_{1}=\left(A_{1} \mathbf{v}_{1}\right)$ for all \mathbf{v} in \mathbb{R}^{2} and $A_{1} \mathbf{k}=\mathbf{k}$. Hence part (1) of this theorem shows

$$
\begin{aligned}
\operatorname{area}(A \mathbf{p}, A \mathbf{q}) & =\operatorname{vol}\left(A_{1} \mathbf{p}_{1}, A_{1} \mathbf{q}_{1}, A_{1} \mathbf{k}\right) \\
& =\left|\operatorname{det}\left(A_{1}\right)\right| \operatorname{vol}\left(\mathbf{p}_{1}, \mathbf{q}_{1}, \mathbf{k}\right) \\
& =|\operatorname{det}(A)| \operatorname{area}(\mathbf{p}, \mathbf{q})
\end{aligned}
$$

as required.

Define the unit square and unit cube to be the square and cube corresponding to the coordinate vectors in \mathbb{R}^{2} and \mathbb{R}^{3}, respectively. Then Theorem 4.4.5 gives a geometrical meaning to the determinant of a matrix A :

- If A is a 2×2 matrix, then $|\operatorname{det}(A)|$ is the area of the image of the unit square under multiplication by A;
- If A is a 3×3 matrix, then $|\operatorname{det}(A)|$ is the volume of the image of the unit cube under multiplication by A.

These results, together with the importance of areas and volumes in geometry, were among the reasons for the initial development of determinants.

Exercises for 4.4

Exercise 4.4.1 In each case show that that T is either projection on a line, reflection in a line, or rotation through an angle, and find the line or angle.
a. $T\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}x+2 y \\ 2 x+4 y\end{array}\right]$
b. $T\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}x-y \\ y-x\end{array}\right]$
c. $T\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{c}-x-y \\ x-y\end{array}\right]$
d. $T\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}-3 x+4 y \\ 4 x+3 y\end{array}\right]$
e. $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-y \\ -x\end{array}\right]$
f. $T\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}x-\sqrt{3} y \\ \sqrt{3} x+y\end{array}\right]$
b. $A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$, projection on $y=-x$.
d. $A=\frac{1}{5}\left[\begin{array}{rr}-3 & 4 \\ 4 & 3\end{array}\right]$, reflection in $y=2 x$.
f. $A=\frac{1}{2}\left[\begin{array}{rr}1 & -\sqrt{3} \\ \sqrt{3} & 1\end{array}\right]$, rotation through $\frac{\pi}{3}$.

Exercise 4.4.2 Determine the effect of the following transformations.
a. Rotation through $\frac{\pi}{2}$, followed by projection on the y axis, followed by reflection in the line $y=x$.
b. Projection on the line $y=x$ followed by projection on the line $y=-x$.
c. Projection on the x axis followed by reflection in the line $y=x$.
b. The zero transformation.

Exercise 4.4.3 In each case solve the problem by finding the matrix of the operator.
a. Find the projection of $\mathbf{v}=\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right]$ on the plane with equation $3 x-5 y+2 z=0$.
b. Find the projection of $\mathbf{v}=\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$ on the plane with equation $2 x-y+4 z=0$.
c. Find the reflection of $\mathbf{v}=\left[\begin{array}{r}1 \\ -2 \\ 3\end{array}\right]$ in the plane with equation $x-y+3 z=0$.
d. Find the reflection of $\mathbf{v}=\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$ in the plane with equation $2 x+y-5 z=0$.
e. Find the reflection of $\mathbf{v}=\left[\begin{array}{r}2 \\ 5 \\ -1\end{array}\right]$ in the line with equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=t\left[\begin{array}{r}1 \\ 1 \\ -2\end{array}\right]$.
f. Find the projection of $\mathbf{v}=\left[\begin{array}{r}1 \\ -1 \\ 7\end{array}\right]$ on the line with equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=t\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right]$.
g. Find the projection of $\mathbf{v}=\left[\begin{array}{r}1 \\ 1 \\ -3\end{array}\right]$ on the line with equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=t\left[\begin{array}{r}2 \\ 0 \\ -3\end{array}\right]$.
h. Find the reflection of $\mathbf{v}=\left[\begin{array}{r}2 \\ -5 \\ 0\end{array}\right]$ in the line with equation $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=t\left[\begin{array}{r}1 \\ 1 \\ -3\end{array}\right]$.
b. $\frac{1}{21}\left[\begin{array}{rrr}17 & 2 & -8 \\ 2 & 20 & 4 \\ -8 & 4 & 5\end{array}\right]\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$
d. $\frac{1}{30}\left[\begin{array}{rrr}22 & -4 & 20 \\ -4 & 28 & 10 \\ 20 & 10 & -20\end{array}\right]\left[\begin{array}{r}0 \\ 1 \\ -3\end{array}\right]$
f. $\frac{1}{25}\left[\begin{array}{rrr}9 & 0 & 12 \\ 0 & 0 & 0 \\ 12 & 0 & 16\end{array}\right]\left[\begin{array}{r}1 \\ -1 \\ 7\end{array}\right]$
h. $\frac{1}{11}\left[\begin{array}{rrr}-9 & 2 & -6 \\ 2 & -9 & -6 \\ -6 & -6 & 7\end{array}\right]\left[\begin{array}{r}2 \\ -5 \\ 0\end{array}\right]$

Exercise 4.4.4

a. Find the rotation of $\mathbf{v}=\left[\begin{array}{r}2 \\ 3 \\ -1\end{array}\right]$ about the z axis through $\theta=\frac{\pi}{4}$.
b. Find the rotation of $\mathbf{v}=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$ about the z axis through $\theta=\frac{\pi}{6}$.
b. $\frac{1}{2}\left[\begin{array}{rrr}\sqrt{3} & -1 & 0 \\ 1 & \sqrt{3} & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$

Exercise 4.4.5 Find the matrix of the rotation in \mathbb{R}^{3} about the x axis through the angle $\boldsymbol{\theta}$ (from the positive y axis to the positive z axis).

Exercise 4.4.6 Find the matrix of the rotation about the y axis through the angle θ (from the positive x axis to the positive z axis).
$\left[\begin{array}{ccc}\cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta\end{array}\right]$
Exercise 4.4.7 If A is 3×3, show that the image of the line in \mathbb{R}^{3} through \mathbf{p}_{0} with direction vector \mathbf{d} is the line through $A \mathbf{p}_{0}$ with direction vector $A \mathbf{d}$, assuming that $A \mathbf{d} \neq \mathbf{0}$. What happens if $A \mathbf{d}=\mathbf{0}$?

Exercise 4.4.8 If A is 3×3 and invertible, show that the image of the plane through the origin with normal \mathbf{n} is the plane through the origin with normal $\mathbf{n}_{1}=B \mathbf{n}$ where $B=\left(A^{-1}\right)^{T}$. [Hint: Use the fact that $\mathbf{v} \cdot \mathbf{w}=\mathbf{v}^{T} \mathbf{w}$ to show that $\mathbf{n}_{1} \cdot(A \mathbf{p})=\mathbf{n} \cdot \mathbf{p}$ for each \mathbf{p} in \mathbb{R}^{3}.]

Exercise 4.4.9 Let L be the line through the origin in \mathbb{R}^{2} with direction vector $\mathbf{d}=\left[\begin{array}{l}a \\ b\end{array}\right] \neq 0$.
a. If P_{L} denotes projection on L, show that P_{L} has $\operatorname{matrix} \frac{1}{a^{2}+b^{2}}\left[\begin{array}{ll}a^{2} & a b \\ a b & b^{2}\end{array}\right]$.
b. If Q_{L} denotes reflection in L, show that Q_{L} has matrix $\frac{1}{a^{2}+b^{2}}\left[\begin{array}{cc}a^{2}-b^{2} & 2 a b \\ 2 a b & b^{2}-a^{2}\end{array}\right]$.
a. Write $\mathbf{v}=\left[\begin{array}{l}x \\ y\end{array}\right]$.

$$
\begin{aligned}
P_{L}(\mathbf{v})=\left(\frac{\mathbf{v} \cdot \mathbf{d}}{\|\mathbf{d}\|^{2}}\right) \mathbf{d} & =\frac{a x+b y}{a^{2}+b^{2}}\left[\begin{array}{l}
a \\
b
\end{array}\right] \\
& =\frac{1}{a^{2}+b^{2}}\left[\begin{array}{l}
a^{2} x+a b y \\
a b x+b^{2} y
\end{array}\right] \\
& =\frac{1}{a^{2}+b^{2}}\left[\begin{array}{l}
a^{2}+a b \\
a b+b^{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
\end{aligned}
$$

Exercise 4.4.10 Let \mathbf{n} be a nonzero vector in \mathbb{R}^{3}, let L be the line through the origin with direction vector \mathbf{n}, and let M be the plane through the origin with normal \mathbf{n}. Show that $P_{L}(\mathbf{v})=Q_{L}(\mathbf{v})+P_{M}(\mathbf{v})$ for all \mathbf{v} in \mathbb{R}^{3}. [In this case, we say that $P_{L}=Q_{L}+P_{M}$.]

Exercise 4.4.11 If M is the plane through the origin in \mathbb{R}^{3} with normal $\mathbf{n}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$, show that Q_{M} has matrix
$\frac{1}{a^{2}+b^{2}+c^{2}}\left[\begin{array}{ccc}b^{2}+c^{2}-a^{2} & -2 a b & -2 a c \\ -2 a b & a^{2}+c^{2}-b^{2} & -2 b c \\ -2 a c & -2 b c & a^{2}+b^{2}-c^{2}\end{array}\right]$
4.4. Linear Operators on $\mathbb{R}^{3}-453$

[^0]: ${ }^{13}$ Note that Theorem 4.4 .1 does not apply to P_{L} since it does not preserve distance.

